
Distributed Tracing with
Tempo and OpenTelemetry
Auto-Instrumentation

Andreas Gerstmayr
Senior Software Engineer
Red Hat

Agenda

3

● Introduction to Distributed Tracing

● Manual and Automatic Instrumentation

● New Distributed Tracing Stack on OpenShift

● Example

Distributed Tracing

What is distributed tracing?

5

● Distributed Tracing records the execution of individual requests in distributed systems

(through proxies, microservices, databases, etc.)

● a trace is a data/execution path through the system and contains one or more spans

● a span represents a single unit of work, with an operation name, start, duration, and

optionally custom attributes and logs

6

Why distributed tracing?

7

● reduce mean time to detect (MTTD) and mean time to remediate (MTTR)

● optimize performance

● understand how data flows through a system

OpenTelemetry

8

● Collection of APIs and SDKs, Data Model and semantic conventions (“k8s.pod.name”)

● Protocol (OTLP)

● Collector (receive, process and export telemetry data)

Instrumentation

Manual Instrumentation with OTEL SDK

10

func rolldice(ctx context.Context) int {
 ctx, span := tracer.Start(ctx, "rolldice")
 defer span.End()

 roll := 1 + rand.Intn(6)
 span.SetAttributes(attribute.Int("roll.value", roll))
 return roll
}

func rolldiceHandler(w http.ResponseWriter, r *http.Request) {
 ctx, span := tracer.Start(r.Context(), "rolldiceHandler")
 defer span.End()

 roll1 := rolldice(ctx)
 roll2 := rolldice(ctx)
 roll3 := rolldice(ctx)

 io.WriteString(w, fmt.Sprintf("%d,%d,%d\n", roll1, roll2, roll3))
}

Manual Instrumentation with OTEL wrappers

11

import io.opentelemetry.instrumentation.jdbc.datasource.OpenTelemetryDataSource;

@Configuration
public class DataSourceConfig {

 @Bean
 public DataSource dataSource() {
 BasicDataSource dataSource = new BasicDataSource();
 dataSource.setDriverClassName("org.postgresql.Driver");
 dataSource.setUrl("jdbc:postgresql://127.0.0.1:5432/example");
 dataSource.setUsername("postgres");
 dataSource.setPassword("root");
 return new OpenTelemetryDataSource(dataSource);
 }

}

Manual Instrumentation with OTEL wrappers

12

KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);

KafkaProducer<String, String> producer = new KafkaProducer<>(properties);

KafkaTelemetry telemetry = KafkaTelemetry.create(GlobalOpenTelemetry.get());

Producer<String, String> tracingProducer = telemetry.wrap(producer);

Consumer<String, String> tracingConsumer = telemetry.wrap(consumer);

Automatic Instrumentation with OTEL

13

● Captures telemetry data from popular libraries and frameworks

● Red Hat OpenShift distributed tracing data collection supports injecting

auto-instrumentation agents for the following languages/applications (Dev Preview):
○ Java

○ .NET

○ NodeJS

○ Go

○ Python

○ Apache HTTPD

Distributed Tracing
on OpenShift

New Distributed Tracing Stack on OpenShift

15

● Instrumentation: OpenTelemetry, Jaeger, OpenCensus or Zipkin

● Collection: OpenTelemetry Collector (managed by OpenShift distributed tracing data

collection operator)

● Storage: Grafana Tempo (managed by Tempo Operator), object storage

● Visualization: Jaeger UI (managed by Tempo Operator)

Tempo Operator

16

● Deployment of Grafana Tempo instances

● Authentication and Authorization, Multitenancy

● Jaeger UI

● Managed upgrades

Red Hat OpenShift distributed tracing data collection

17

● Deployment of OpenTelemetry Collector instances as sidecar, daemon set or regular

deployment

● Auto-Instrumentation injection

● Managed upgrades

OpenShift Service Mesh

18

● OpenShift Service Mesh supports creating spans of the interactions between services

in the service mesh

● Services must propagate trace context between inbound and outbound requests in

order to correlate spans

Example

20

Storage Configuration for Tempo

21

apiVersion: v1

kind: Secret

metadata:

 name: tempo-storage

type: Opaque

stringData:

 endpoint: http://minio:9000

 bucket: tempo

 access_key_id: tempo

 access_key_secret: supersecret

Tempo Deployment

22

apiVersion: tempo.grafana.com/v1alpha1

kind: TempoStack

metadata:

 name: prod

spec:

 storage:

 secret:

 name: tempo-storage

 type: s3

 storageSize: 1Gi

 template:

 queryFrontend:

 jaegerQuery:

 enabled: true

 ingress:

 type: route

23

apiVersion: opentelemetry.io/v1alpha1

kind: OpenTelemetryCollector

metadata:

 name: otel

spec:

 config: |

 receivers:

 otlp:

 protocols:

 grpc:

 exporters:

 otlp:

 endpoint: tempo-prod-distributor:4317

 tls:

 insecure: true

 processors:

 batch:

 service:

 pipelines:

 traces:

 receivers: [otlp]

 processors: [batch]

 exporters: [otlp]

OpenTelemetry Collector Deployment

Auto-Instrumentation

24

apiVersion: opentelemetry.io/v1alpha1

kind: Instrumentation

metadata:

 name: petclinic

spec:

 exporter:

 endpoint: http://otel-collector:4317

PetClinic Deployment

25

apiVersion: apps/v1

kind: Deployment

metadata:

 name: petclinic

spec:

 selector:

 matchLabels:

 app: petclinic

 template:

 metadata:

 labels:

 app: petclinic

 annotations:

 instrumentation.opentelemetry.io/inject-java: petclinic

 spec:

 containers:

 - image: springcommunity/spring-framework-petclinic:6.0.3

 name: petclinic

26

27

28

29

Java Auto-Instrumentation: Behind the Scenes

30

The OpenShift distributed tracing data collection operator performs the following

modifications to a pod:

● It attaches a new emptyDir volume

● It adds a new init container, which copies javaagent.jar to this volume

● This volume is mounted in the container of the application

● The JAVA_TOOL_OPTIONS environment variable is modified to load javaagent.jar

Q & A

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you

